On some canonical metrics on holomorphic vector bundles over Kahler manifolds

By: Contributor(s): Material type: TextTextLanguage: en Publication details: Bangalore : IISc , 2023 .Description: xii, 93p. 29.1 cm * 20.5 cm e-Thesis 825.0KbSubject(s): DDC classification:
  • 510 KAR
Online resources: Dissertation note: PhD; 2023; Mathematics Summary: This thesis consists of two parts. In the first part, we introduce coupled Kähler- Einstein and Hermitian-Yang-Mills equations. It is shown that these equations have an interpretation in terms of a moment map. We identify a Futaki-type invariant as an obstruction to the existence of solutions of these equations. We also prove a Matsushima- Lichnerowicz-type theorem as another obstruction. Using the Calabi ansatz, we produce nontrivial examples of solutions of these equations on some projective bundles. Another class of nontrivial examples is produced using deformation. In the second part, we prove a priori estimates for vortex-type equations. We then apply these a priori estimates in some situations. One important application is the existence and uniqueness result concerning solutions of the Calabi-Yang-Mills equations. We recover a priori estimates of the J-vortex equation and the Monge-Ampère vortex equation. We establish a corre- spondence result between Gieseker stability and the existence of almost Hermitian-Yang- Mills metric in a particular case. We also investigate the Kählerity of the symplectic form which arises in the moment map interpretation of the Calabi-Yang-Mills equations.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Status Date due Barcode
E-BOOKS E-BOOKS JRD Tata Memorial Library 510 KAR (Browse shelf(Opens below)) Available ET00165

include bibliographic reference and index

PhD; 2023; Mathematics

This thesis consists of two parts. In the first part, we introduce coupled Kähler- Einstein and Hermitian-Yang-Mills equations. It is shown that these equations have an interpretation in terms of a moment map. We identify a Futaki-type invariant as an obstruction to the existence of solutions of these equations. We also prove a Matsushima- Lichnerowicz-type theorem as another obstruction. Using the Calabi ansatz, we produce nontrivial examples of solutions of these equations on some projective bundles. Another class of nontrivial examples is produced using deformation. In the second part, we prove a priori estimates for vortex-type equations. We then apply these a priori estimates in some situations. One important application is the existence and uniqueness result concerning solutions of the Calabi-Yang-Mills equations. We recover a priori estimates of the J-vortex equation and the Monge-Ampère vortex equation. We establish a corre- spondence result between Gieseker stability and the existence of almost Hermitian-Yang- Mills metric in a particular case. We also investigate the Kählerity of the symplectic form which arises in the moment map interpretation of the Calabi-Yang-Mills equations.

There are no comments on this title.

to post a comment.

                                                                                                                                                                                                    Facebook    Twitter

                             Copyright © 2024. J.R.D. Tata Memorial Library, Indian Institute of Science, Bengaluru - 560012

                             Contact   Phone: +91 80 2293 2832