Barrier function inspired reward shaping in reinforcement learning

By: Contributor(s): Material type: TextTextPublication details: Bangalore : Indian Institute of Science, 2024.Description: xi, 56 p. : col. ill. e- Thesis. 20.64 MbSubject(s): DDC classification:
  • 006.31 RAN
Online resources: Dissertation note: MSc(Res);2024;Computer Science and Automation. Summary: Reinforcement Learning (RL) has progressed from simple control tasks to complex real-world challenges with large state spaces. During initial iterations of training in most Reinforcement Learning (RL) algorithms, agents perform a significant number of random exploratory steps, which in the real world limits the practicality of these algorithms as this can lead to potentially dangerous behaviour. Hence, safe exploration is a critical issue when applying RL algorithms in the real world. Although RL excels in solving these challenging problems, the time required for convergence during training remains a significant limitation. Various techniques have been proposed to mitigate this issue, and reward shaping has emerged as a popular solution. However, most existing reward-shaping methods rely on value functions, which can pose scalability challenges as the environment’s complexity grows. Our research proposes a novel framework for reward shaping inspired by Barrier Functions, which is safety-oriented, intuitive, and easy to implement for any environment or task. To evaluate the effectiveness of our proposed reward formulations, we present our results on a challenging Safe Reinforcement Learning benchmark - the Open AI Safety Gym. We have conducted experiments on various environments, including CartPole, Half-Cheetah, Ant, and Humanoid. Our results demonstrate that our method leads to 1.4-2.8 times faster convergence and as low as 50-60% actuation effort compared to the vanilla reward. Moreover, our formulation has a theoretical basis for safety, which is crucial for real-world applications. In a sim-to-real experiment with the Go1 robot, we demonstrated better control and dynamics of the bot with our reward framework.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)

Includes bibliography.

MSc(Res);2024;Computer Science and Automation.

Reinforcement Learning (RL) has progressed from simple control tasks to complex real-world challenges with large state spaces. During initial iterations of training in most Reinforcement Learning (RL) algorithms, agents perform a significant number of random exploratory steps, which in the real world limits the practicality of these algorithms as this can lead to potentially dangerous behaviour. Hence, safe exploration is a critical issue when applying RL algorithms in the real world. Although RL excels in solving these challenging problems, the time required for convergence during training remains a significant limitation. Various techniques have been proposed to mitigate this issue, and reward shaping has emerged as a popular solution. However, most existing reward-shaping methods rely on value functions, which can pose scalability challenges as the environment’s complexity grows. Our research proposes a novel framework for reward shaping inspired by Barrier Functions, which is safety-oriented, intuitive, and easy to implement for any environment or task. To evaluate the effectiveness of our proposed reward formulations, we present our results on a challenging Safe Reinforcement Learning benchmark - the Open AI Safety Gym. We have conducted experiments on various environments, including CartPole, Half-Cheetah, Ant, and Humanoid. Our results demonstrate that our method leads to 1.4-2.8 times faster convergence and as low as 50-60% actuation effort compared to the vanilla reward. Moreover, our formulation has a theoretical basis for safety, which is crucial for real-world applications. In a sim-to-real experiment with the Go1 robot, we demonstrated better control and dynamics of the bot with our reward framework.

There are no comments on this title.

to post a comment.

                                                                                                                                                                                                    Facebook    Twitter

                             Copyright © 2024. J.R.D. Tata Memorial Library, Indian Institute of Science, Bengaluru - 560012

                             Contact   Phone: +91 80 2293 2832