Opto-electronic properties of a few dimensionally controlled hybrid halides and related systems

By: Contributor(s): Material type: BookBookLanguage: en Publication details: Bangalore : IISc , 2022 .Description: xxi, 216p. col. ill. ; 29.1 cm * 20.5 cm e-Thesis 14.17MbDissertation: PhD; 2022; Solid state and structural chemistry unitSubject(s): DDC classification:
  • 540 DEB
Online resources: Dissertation note: PhD; 2022; Solid state and structural chemistry unit Summary: To mitigate the adverse environmental effects of burning fossil fuels, it became necessary to explore alternative ‘clean’ renewable energy sources to meet the ever-increasing energy demands. While silicon-based solar cell devices have been at the forefront for decades, recently organic-inorganic hybrid halide perovskites APbX3 [A = methylammonium (MA+), formamidinium (FA+); X = halides] have transpired as a new family of materials as the alternatives, owing to their exceptional optoelectronic properties such as tuneable bandgap, low exciton binding energy, high carrier mobility, high defect tolerance etc. Remarkably, the efficiency of these solar cells with hybrid perovskites as the active layer has shot up from 3.8% in 2009 to exceed 25% at present. However, the environmental stability of the given materials remains elusive, placing a considerable hurdle on the way to its commercialization. Compositional engineering by partially substituting ‘A-site’ (MA+ with FA+) and/or ‘X-site’ (I- with Br-) ions of the perovskite have proven to be one of the successful approaches to enhance the stability of these materials. More recently, reasonable success in increasing environmental stability is achieved by incorporating bulkier and hydrophobic organic cations at the ‘A-site’, resulting in 2D layered counterparts with enhanced bandgap and exciton binding energy.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Status Date due Barcode
E-BOOKS E-BOOKS JRD Tata Memorial Library 540 DEB (Browse shelf(Opens below)) Available ET00196

include bibliographic reference and index

PhD; 2022; Solid state and structural chemistry unit

To mitigate the adverse environmental effects of burning fossil fuels, it became necessary to explore alternative ‘clean’ renewable energy sources to meet the ever-increasing energy demands. While silicon-based solar cell devices have been at the forefront for decades, recently organic-inorganic hybrid halide perovskites APbX3 [A = methylammonium (MA+), formamidinium (FA+); X = halides] have transpired as a new family of materials as the alternatives, owing to their exceptional optoelectronic properties such as tuneable bandgap, low exciton binding energy, high carrier mobility, high defect tolerance etc. Remarkably, the efficiency of these solar cells with hybrid perovskites as the active layer has shot up from 3.8% in 2009 to exceed 25% at present. However, the environmental stability of the given materials remains elusive, placing a considerable hurdle on the way to its commercialization. Compositional engineering by partially substituting ‘A-site’ (MA+ with FA+) and/or ‘X-site’ (I- with Br-) ions of the perovskite have proven to be one of the successful approaches to enhance the stability of these materials. More recently, reasonable success in increasing environmental stability is achieved by incorporating bulkier and hydrophobic organic cations at the ‘A-site’, resulting in 2D layered counterparts with enhanced bandgap and exciton binding energy.

There are no comments on this title.

to post a comment.

                                                                                                                                                                                                    Facebook    Twitter

                             Copyright © 2023. J.R.D. Tata Memorial Library, Indian Institute of Science, Bengaluru - 560012

                             Contact   Phone: +91 80 2293 2832

Powered by Koha