Space-time gauge theories for continuum modelling of viscoplasticity, damage and Electro-magneto-mechanical phenomena in solids

By: Contributor(s): Material type: BookBookLanguage: en. Publication details: Bengaluru : IISc , 2022 .Description: vi, 177p. e-Thesis col. ill. ; 29.1 cm * 20.5 cm 7.077MbDissertation: PhD; 2022; Civil engineeringSubject(s): DDC classification:
  • 624 SAN
Online resources: Dissertation note: PhD; 2022; Civil engineering Summary: Over the years, sustained research efforts have aimed to understand the material behaviour under a broad range of response regimes, especially from micromechanical or phenomenological perspectives — via both continuum modeling and experiments conducted at different scales. However, a review of the relevant literature has revealed that physics-based models that can replicate experimental results are very few, and models depicting consistent coupling phenomena observed in solids beyond elasticity are elusive. Symmetry-driven approaches to continuum mechanics of solids typically have a unifying nature, combining the prediction of diverse observed phenomena under a single umbrella. This thesis attempts to derive a unified field theory for various physical phenomena in solids by exploring local symmetry, which offers a framework to consistently arrive at the relations among polarization vector, temperature, scalar potential, vector potential, and the electric and magnetic field for multiphysics phenomena. Furthermore, this approach enables a consistent and robust coupling among flow stress, strain rate, and other variables describing the kinematics of plasticity and damage. This thesis draws upon continuous and local symmetry-based principles of gauge theory to arrive at continuum models for various electro-magneto-mechanical coupling phenomena and inelastic responses involving plasticity and damage in solids. The specific local symmetries we exploit in the process are conformal (scaling) and translational in space-time. The work presented may thus be classed in two parts – one focusing on a unified continuum description of multi-physics phenomena such as piezoelectricity, piezo-magnetism, coupled thermoelasticity and flexoelectricity and the other on dissipative phenomena such as plasticity and damage. Under an inhomogeneous (local) action of the symmetry (gauge) group, invariance of the energy density is lost. Minimal replacement is used to restore gauge invariance of the energy density; this requires the definition of a gauge covariant operator in place of the ordinary partial derivative. Minimal replacement introduces a non-trivial gauge compensating 1-form field. The 1-form field is decomposed into an anti-exact part and the exact differential of a scalar-valued function. The other essential ingredient of gauge theory is minimal coupling
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Status Date due Barcode
E-BOOKS E-BOOKS JRD Tata Memorial Library 624 SAN (Browse shelf(Opens below)) Available ET00063

Include bibliographical references and index

PhD; 2022; Civil engineering

Over the years, sustained research efforts have aimed to understand the material behaviour under a broad range of response regimes, especially from micromechanical or phenomenological perspectives — via both continuum modeling and experiments conducted at different scales. However, a review of the relevant literature has revealed that physics-based models that can replicate experimental results are very few, and models depicting consistent coupling phenomena observed in solids beyond elasticity are elusive. Symmetry-driven approaches to continuum mechanics of solids typically have a unifying nature, combining the prediction of diverse observed phenomena under a single umbrella. This thesis attempts to derive a unified field theory for various physical phenomena in solids by exploring local symmetry, which offers a framework to consistently arrive at the relations among polarization vector, temperature, scalar potential, vector potential, and the electric and magnetic field for multiphysics phenomena. Furthermore, this approach enables a consistent and robust coupling among flow stress, strain rate, and other variables describing the kinematics of plasticity and damage. This thesis draws upon continuous and local symmetry-based principles of gauge theory to arrive at continuum models for various electro-magneto-mechanical coupling phenomena and inelastic responses involving plasticity and damage in solids. The specific local symmetries we exploit in the process are conformal (scaling) and translational in space-time. The work presented may thus be classed in two parts – one focusing on a unified continuum description of multi-physics phenomena such as piezoelectricity, piezo-magnetism, coupled thermoelasticity and flexoelectricity and the other on dissipative phenomena such as plasticity and damage. Under an inhomogeneous (local) action of the symmetry (gauge) group, invariance of the energy density is lost. Minimal replacement is used to restore gauge invariance of the energy density; this requires the definition of a gauge covariant operator in place of the ordinary partial derivative. Minimal replacement introduces a non-trivial gauge compensating 1-form field. The 1-form field is decomposed into an anti-exact part and the exact differential of a scalar-valued function. The other essential ingredient of gauge theory is minimal coupling

There are no comments on this title.

to post a comment.

                                                                                                                                                                                                    Facebook    Twitter

                             Copyright © 2023. J.R.D. Tata Memorial Library, Indian Institute of Science, Bengaluru - 560012

                             Contact   Phone: +91 80 2293 2832

Powered by Koha