Multiscale modeling of molecular sieve membranes (Record no. 432998)
[ view plain ]
000 -LEADER | |
---|---|
fixed length control field | 03530nam a22002537a 4500 |
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION | |
fixed length control field | 250103b |||||||| |||| 00| 0 eng d |
041 ## - LANGUAGE CODE | |
Language code of text/sound track or separate title | en |
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER | |
Classification number | 620.82 |
Item number | DAS |
100 ## - MAIN ENTRY--PERSONAL NAME | |
Personal name | Dasgupta, Subhadeep |
245 ## - TITLE STATEMENT | |
Title | Multiscale modeling of molecular sieve membranes |
260 ## - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT) | |
Place of publication, distribution, etc | Bangalore : |
Name of publisher, distributor, etc | Indian Institute of Science, |
Date of publication, distribution, etc | 2024. |
300 ## - PHYSICAL DESCRIPTION | |
Extent | xii, 107p. : |
Other physical details | col. ill. |
Accompanying material | e-Thesis |
Size of unit | 16.41Mb |
500 ## - GENERAL NOTE | |
General note | Includes bibliographical references. |
502 ## - DISSERTATION NOTE | |
Dissertation note | PhD;2024; Physics. |
520 ## - SUMMARY, ETC. | |
Summary, etc | Gases permeating through nanopores experience selective adsorption with sub-diffusive dynamics. In this work we investigate how the physicochemical properties of nanoporous membranes influence adsorption dynamics of gases, employing multiscale molecular simulations: molecular dynamics (MD), grand canonical Monte Carlo (GCMC), and kinetic Monte Carlo (KMC) simulations. We report the existence of an optimum chain length of highest curvature, leading to low density, high porosity, and high gas uptake without compromising the membrane’s sorption selectivity [1]. The trajectory extending kinetic Monte Carlo (TEKMC) technique efficiently extends molecular trajectories from nanosecond to microsecond timescales and is utilized to evaluate the mixture diffusivities in binary mixtures to determine the permselectivity of gases in mixtures, to reliably evaluate the performance of nanoporous membranes for gas separations for industrial applications [2]. An open-source software package is built and made available for easy computation of long-time diffusion of small penetrants in nanoporous materials. The simulation data is adjoined with existing databases to train ML architectures allowing in silico prediction of gas adsorption isotherm with remarkable accuracy. The novel use of single and binary gas adsorption isotherms, inside molecular sieving membrane and metal organic frameworks, opens a new avenue for predicting complex adsorption processes for gas mixtures for future materials [3]. The work also provides insights into interfacial polymerization of thin-film composite microstructures [4] and explain gas permeability trends observed in experiments. References: [1] Dasgupta, S., Rajasekaran, M., Roy, P.K., Thakkar, F.M., Pathak, A.D., Ayappa, K.G. and Maiti, P.K., 2022. Influence of chain length on structural properties of carbon molecular sieving membranes and their effects on CO2, CH4 and N2 adsorption: A molecular simulation study. Journal of Membrane Science, 664, p.121044. [2] Dasgupta, S., KS, A., Ayappa, K.G. and Maiti, P.K., 2023. Trajectory-Extending Kinetic Monte Carlo Simulations to Evaluate Pure and Gas Mixture Diffusivities through a Dense Polymeric Membrane. The Journal of Physical Chemistry B, 127(45), pp.9841-9849. [3] Dasgupta, S., RS, A. and Maiti, P.K., “Unifying Mixed Gas Adsorption in Polymers and MOFs using Machine Learning”. Separation and Purification Technology 353 (2025): 128477. [4] Song, W., Park, J., Dasgupta, S., Yao, C., Maroli, N., Behera, H., Yin, X., Acharya, D.P., Zhang, X., Doherty, C.M. and Maiti, P.K., 2022. Scalable pillar [5] arene-integrated poly (arylate-amide) molecular sieve membranes to separate light gases. Chemistry of Materials, 34(14), pp.6559-6567. |
650 ## - SUBJECT ADDED ENTRY--TOPICAL TERM | |
Topical term or geographic name as entry element | Carbon Capture and Storage |
650 ## - SUBJECT ADDED ENTRY--TOPICAL TERM | |
Topical term or geographic name as entry element | Gas Adsorption |
650 ## - SUBJECT ADDED ENTRY--TOPICAL TERM | |
Topical term or geographic name as entry element | Polymer Physics |
650 ## - SUBJECT ADDED ENTRY--TOPICAL TERM | |
Topical term or geographic name as entry element | Molecular Dynamics |
650 ## - SUBJECT ADDED ENTRY--TOPICAL TERM | |
Topical term or geographic name as entry element | Monte Carlo Simulation |
700 ## - ADDED ENTRY--PERSONAL NAME | |
Personal name | Advised by Maiti, Prabal K |
856 ## - ELECTRONIC LOCATION AND ACCESS | |
Uniform Resource Identifier | https://etd.iisc.ac.in/handle/2005/6745 |
942 ## - ADDED ENTRY ELEMENTS (KOHA) | |
Koha item type | Thesis |
No items available.