Astrocytes regulate oligodendrocyte development and myelination in the mammalian brain

By: Contributor(s): Material type: TextTextPublication details: Bangalore: Indian Institute of Science, 2023Description: xviii, 167p.: col. ill. e-Thesis 6.583 MBSubject(s): DDC classification:
  • 370.94 DAS
Online resources: Dissertation note: PhD; 2023; Centre for Neuroscience Summary: Oligodendrocytes (OLs), a type of glial cell, are the main myelinating cells of the mammalian central nervous system (CNS), enabling efficient saltatory mode of nerve conduction. On the other hand, astrocytes, another glial cell type, have diverse functions including neurotransmitter reuptake, maintenance of the blood-brain barrier, and providing trophic support. In the murine brain, there is a temporal sequence in the generation of major cell types with neurons differentiating first from the ventricular/sub-ventricular zone neural progenitor cells (NPCs), followed by astrocytes and oligodendrocytes. Recent findings from our lab have shown that astrocyte-specific deletion of serum response factor (Srf) early during murine brain development leads to hypertrophic astrocytes exhibiting reactive-like phenotype throughout the brain (Jain et al., 2021). This reactive-like phenotype persists throughout adulthood. Interestingly, the SrfGFAPcKO brains also exhibit severe loss of myelin in different grey and white matter regions. The myelin deficits become evident around four weeks of age and worsen over time. Further investigations have shown that the myelin loss is not due to deficits in oligodendrocyte lineage cell proliferation, differentiation, or loss of oligodendrocyte progenitors or mature oligodendrocytes. Instead, the observations suggest that oligodendrocytes fail to mature into the myelinating phenotype. Comprehensive evaluation of motor behavior provided compelling evidence of significant abnormalities in motor coordination and gait in these Srf mutant mice as evident from open field exploration, accelerating rotarod test and footprint analysis. These findings not only shed light on the specific behavioral deficits but also establish a potential connection between the observed hypomyelination in these mice and the impairments in their motor functions. Transcriptomic analysis of RNA isolated from control and SrfGFAPcKO astrocytes revealed the downregulation of genes involved in lipid and cholesterol metabolism in SRF mutant astrocytes. Astrocytes are known to supply essential lipids and cholesterol to oligodendrocytes for myelin synthesis. Any disruptions in this astrocytic lipid and cholesterol supply can result in defects in myelination. Furthermore, a comparative analysis of the Srf mutant astrocyte transcriptome with that of astrocytes in a mouse model of Alexander disease has revealed shared genes between the two datasets. This further suggests that the myelin defects observed in the Srf mutant mice resemble those observed in the Alexander disease model. These findings shed light on the intricate interplay between astrocytes and oligodendrocytes and highlights the importance of Srf and associated pathways in the regulation of oligodendrocyte development and myelination.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number URL Status Date due Barcode
Thesis Thesis JRD Tata Memorial Library 370.94 DAS (Browse shelf(Opens below)) Link to resource Not For Loan ET00311

includes bibliographical references and index

PhD; 2023; Centre for Neuroscience

Oligodendrocytes (OLs), a type of glial cell, are the main myelinating cells of the mammalian central nervous system (CNS), enabling efficient saltatory mode of nerve conduction. On the other hand, astrocytes, another glial cell type, have diverse functions including neurotransmitter reuptake, maintenance of the blood-brain barrier, and providing trophic support. In the murine brain, there is a temporal sequence in the generation of major cell types with neurons differentiating first from the ventricular/sub-ventricular zone neural progenitor cells (NPCs), followed by astrocytes and oligodendrocytes. Recent findings from our lab have shown that astrocyte-specific deletion of serum response factor (Srf) early during murine brain development leads to hypertrophic astrocytes exhibiting reactive-like phenotype throughout the brain (Jain et al., 2021). This reactive-like phenotype persists throughout adulthood. Interestingly, the SrfGFAPcKO brains also exhibit severe loss of myelin in different grey and white matter regions. The myelin deficits become evident around four weeks of age and worsen over time. Further investigations have shown that the myelin loss is not due to deficits in oligodendrocyte lineage cell proliferation, differentiation, or loss of oligodendrocyte progenitors or mature oligodendrocytes. Instead, the observations suggest that oligodendrocytes fail to mature into the myelinating phenotype. Comprehensive evaluation of motor behavior provided compelling evidence of significant abnormalities in motor coordination and gait in these Srf mutant mice as evident from open field exploration, accelerating rotarod test and footprint analysis. These findings not only shed light on the specific behavioral deficits but also establish a potential connection between the observed hypomyelination in these mice and the impairments in their motor functions. Transcriptomic analysis of RNA isolated from control and SrfGFAPcKO astrocytes revealed the downregulation of genes involved in lipid and cholesterol metabolism in SRF mutant astrocytes. Astrocytes are known to supply essential lipids and cholesterol to oligodendrocytes for myelin synthesis. Any disruptions in this astrocytic lipid and cholesterol supply can result in defects in myelination. Furthermore, a comparative analysis of the Srf mutant astrocyte transcriptome with that of astrocytes in a mouse model of Alexander disease has revealed shared genes between the two datasets. This further suggests that the myelin defects observed in the Srf mutant mice resemble those observed in the Alexander disease model. These findings shed light on the intricate interplay between astrocytes and oligodendrocytes and highlights the importance of Srf and associated pathways in the regulation of oligodendrocyte development and myelination.

There are no comments on this title.

to post a comment.

                                                                                                                                                                                                    Facebook    Twitter

                             Copyright © 2024. J.R.D. Tata Memorial Library, Indian Institute of Science, Bengaluru - 560012

                             Contact   Phone: +91 80 2293 2832